Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Taibah University Medical Sciences ; 2023.
Article in English | EuropePMC | ID: covidwho-2279244

ABSTRACT

The SARS-CoV-2 virus targets the antigen converting enzyme 2 (ACE2) receptor, thus resulting in elevated morbidity and an increased risk of severe and fatal COVID-19 infection in individuals with hypertension and diabetes mellitus. Objectives This study aimed to identify the association between increased susceptibility and severity in order to evaluate their impact in hypertensive COVID-19 patients using in vitro and in silico models. Methods We identified 80 miRNA binding sites on ACE2 (for different miRNAs) as well as various 30 SNPs in the miRNA binding sites of the 3′ untranslated region (3′ UTR) in the ACE2 gene using different online software and tools. From August 2020 to August 2021, a total of 200 nasopharyngeal/mouth swabs samples were collected from Multan, Pakistan. In order to quantify the cDNA of ACE2 and miR-3658 genes, we used Rotor Gene qRT-PCR on hypertensive patients with COVID-19 as well as healthy controls. Results Interestingly, the binding site of miR-3658 corresponding to the 3′ UTR of ACE2 featured three SNPs (rs1457913029, C>T;rs960535757, A>C, G;rs1423809569, C>T), and its genomic sequence featured a single SNP (rs1024225815, C>T) with the same nucleotide variation (rs1457913029, C>T) which potentially increases the severity of COVID-19. Similarly, three other SNPs (rs1557852115, C>G;rs770335293, A>G;rs1024225815, C>T) were also found on the first binding site positions of miR-3658. Our in vitro study found that ACE2 gene expression had an effect on miR-3658 in COVID-19 patients who also had hypertension. In both cases, our analysis demonstrated that the in silico model captured the same biological mechanisms as the in vitro system. Conclusion The identified SNPs could represent potential informative signatures owing to their position in the splicing site of the ACE2 gene.

2.
J Taibah Univ Med Sci ; 18(5): 1030-1047, 2023 Oct.
Article in English | MEDLINE | ID: covidwho-2279245

ABSTRACT

The SARS-CoV-2 virus targets the antigen converting enzyme 2 (ACE2) receptor, thus resulting in elevated morbidity and an increased risk of severe and fatal COVID-19 infection in individuals with hypertension and diabetes mellitus. Objectives: This study aimed to identify the association between increased susceptibility and severity in order to evaluate their impact in hypertensive COVID-19 patients using in vitro and in silico models. Methods: We identified 80 miRNA binding sites on ACE2 (for different miRNAs) as well as various 30 SNPs in the miRNA binding sites of the 3' untranslated region (3' UTR) in the ACE2 gene using different online software and tools. From August 2020 to August 2021, a total of 200 nasopharyngeal/mouth swabs samples were collected from Multan, Pakistan. In order to quantify the cDNA of ACE2 and miR-3658 genes, we used Rotor Gene qRT-PCR on hypertensive patients with COVID-19 as well as healthy controls. Results: Interestingly, the binding site of miR-3658 corresponding to the 3' UTR of ACE2 featured three SNPs (rs1457913029, C>T; rs960535757, A>C, G; rs1423809569, C>T), and its genomic sequence featured a single SNP (rs1024225815, C>T) with the same nucleotide variation (rs1457913029, C>T) which potentially increases the severity of COVID-19. Similarly, three other SNPs (rs1557852115, C>G; rs770335293, A>G; rs1024225815, C>T) were also found on the first binding site positions of miR-3658. Our in vitro study found that ACE2 gene expression had an effect on miR-3658 in COVID-19 patients who also had hypertension. In both cases, our analysis demonstrated that the in silico model captured the same biological mechanisms as the in vitro system. Conclusion: The identified SNPs could represent potential informative signatures owing to their position in the splicing site of the ACE2 gene.

SELECTION OF CITATIONS
SEARCH DETAIL